

Inasmet-Tecnalia standardizes the quality of large-size cast iron castings with ProCAST

THE CHALLENGE

Meet the customer's quality standard by accurately predicting and optimizing microstructure, mechanical properties and porosity formation in large cast iron wind power turbine castings.

THE STORY

Cast iron are important industrial materials offering to the design engineer unique combinations of high strength, wear resistance, ductility and toughness. Cast iron can exhibit a wide range of properties obtained through the microstructure control. Therefore, in order to better understand the shrinkage behavior of cast iron during solidification, ESI has developed a micromodel to simulate the formation of the microstructure. The change in density during solidification and the resulting mechanical properties at ambient temperature can now be calculated based on the microstructure.

THE BENEFITS

Foundry:

- Suppression/reduction of physical trials
 Reduction of recovering and rejecting
- Causes
- Enhanced understanding of process capability
- · Casting/process optimization
- · Better fit with customer requirements

Customer:

• Effective and early design for manufacturing

INASMET-TECNALIA

Inasmet is a research center located in Donostia, San Sebastián, Spain. Inasmet is a specific business unit of Tecnalia Corporation (1.300 people, 7 centers and E100M turnover) specialised in casting, area in which it has been working for over 45 years. Shrinkage porosity is the most common solidification defect. Shrinkage happens in almost all metal alloys as they contract when cooling from the pouring temperature to the solidus.

Cast iron alloys solidification presents a more complex behavior, since the dissolved carbon partly precipitates as graphite with a lower density than the base iron. Graphite formation is thus associated with a volume increase. This expansion can compensate under

Frame of a wind turbine generator in cast iron

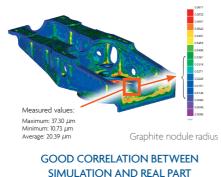
certain circumstances the contraction of the metal to reduce or even avoid shrinkage. Therefore, the generation of shrinkage cavities in cast irons is closely related to the local density change during solidification. The expansion and shrinkage behavior is affected by alloy composition, cooling rate and other process conditions leading to the microstructure.

Today, advanced simulation can be used to understand and control such a complex behavior. In ProCAST, ESI has developed a comprehensive micromodel which can provide accurate microstructural information as well as mechanical properties, such as yield strength, tensile strength, elongation and hardness. The micromodel together with an extensive thermodynamic database have been coupled with the porosity model, resulting in an accurate shrinkage prediction by taking into account the complex phenomenon of graphite expansion.

MICROSTRUCTURE AND MECHANICAL PROPERTIES

Microstructure formation during the solidification of alloys is a very important factor for the control of the properties and quality of casting products. To obtain microstructure predictions, ProCAST couples thermodynamic calculations (from CompuTherm® databases) with micromodels and macro-scale thermal and fluid flow calculations.

Inasmet-Tecnalia has applied this methodology to a 12T wind turbine frame in high tenacity ductile iron EN GJS 400 18LT. The presence of magnesium in the composition causes nodular graphite precipitation during solidification.


Pouring temperature is 1360-1370°C for a filling time of about 80 seconds. The mould is made of high resistance resin bound silica sand.

Fraction of ferrite

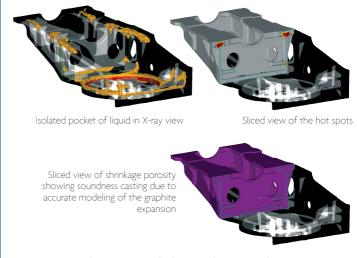
GOOD CORRELATION BETWEEN SIMULATION AND REAL PART Proportion of ferrite and pearlite as well as nodule count provide insight into the mechanical state of the as-cast part. Simulation results are compared with reality.

Inasmet-Tecnalia then used microstructure calculations can then be used to predict the final mechanical properties. In cast iron, the type, amount and morphology of the eutectic will determine the effective mechani-

cal properties. The structure of the matrix is essentially determined by the cooling rate through the eutectoid temperature range. Slow cooling rates promote the transformation of ferrite, thus lower tensile strength as shown in this case study.

	Ferr	itic	Perlitic		
	Measured	ProCAST	Measured	ProCAST	
Yield Strength (Mpa)	230	0 215 267		275	
Ultimate Strength (Mpa)	360	325	420	450	
Elongation (%)	20	16	9	11	

Comparison of mechanical properties prediction between ProCAST and measurements.


POROSITY PREDICTION

The final integrity of a casting, including mechanical properties and surface finish, is greatly influenced by the presence of porosity.

As explained earlier, graphite expansion exhibited by cast iron is not trivial to understand and subsequently very difficult to model. Indeed, it is required to consider microstructure, process conditions, material properties, inoculation, fading, density variation and mechanical properties of the mould to accurately predict shrinkage porosity in cast iron.

ABOUT ESI GROUP

A good control over the metallurgical quality and the graphite expansion means no shrinkage, both in simulation and real part despite the presence of important isolated pocket of liquid as shown on the pictures below.

Inasmet-Tecnalia compared the predictions of microstructure mechanical and porosity with experimental results and found these to be in good agreement.

"ProCAST recent developments prove to be excellent for predicting the microstructure and the basic mechanical properties of casting materials. In addition ProCAST solves one of the main complex phenomenon in cast iron solidification i.e. graphite expansion. Using the microstructure module, the simulation of local graphite expansion is possible with a sensitively higher accuracy for shrinkage defects prediction. The microstructure module opens a new line of possibilities and makes other types of analysis possible, particularly related to the adjustment of the metallurgical quality level using the inoculation parameters in simulation."

Dr. Antton Meléndez Arranz, Metallurgist Inasmet - Tecnalia

ESI is a pioneer and world-leading provider in virtual prototyping that take into account the physics of materials. ESI has developed an extensive suite of coherent, industry-oriented applications to realistically simulate a product's behavior during testing, to fine-tune manufacturing processes in accordance with desired product performance, and to evaluate the environment's impact on performance. ESI's solutions fit into a single collaborative and open environment for End-to-End Virtual Prototyping, thus eliminating the need for physical prototypes during product development. The company employs over 750 high-level specialists worldwide covering more than 30 countries. ESI Group is listed in compartment C of NYSE Euronext Paris. For further information, visit www.esi-group.com.

	EUROPE									
eri-group.com	BENELUX & SCANDINAVIA ESI Group Netherlands Radex Innovation Centre room 4.57 Rotterdamseweg 183 C 2629 HD Delft The Netherlands T. +31 (0)15 268 2501 F. +31 (0)15 268 2514	CZECH REPUBLIC & EASTERN EUROPE MECAS ESI Brojova 2113/16 326 00 Pilsen Czech Republic T. +420 377 432 931 F. +420 377 432 930	FRANCE ESI France Parc d'Affaires Silic 99, rue des Solets - BP 8012 94513 Rungis cedex France T, +33 (0)1 49 78 28 00 F, +33 (0)1 46 87 72 02	GERMANY ESI GmbH Mergenthalerallee 15-21 D-65760 Eschborn Germany T. +49 (0)6196 9583 0 F. +49 (0)6196 9583 111	ITALY ESI Italia Via San Donato 191 40127 Bologna Italy T. +39 0516335577 T. +39 0516335578 F. +39 0516335601	SPAIN ESI Group Hispania Parque Empresarial Arroyo de la Vega C/ Francisca Delgado. 11 – planta 2ª 20108 Alcobendas (Madrid) Spain T. +34 91 484 02 56 F. +34 91 484 02 55	SWITZERLAND Calcom ESI Pare Scientifique EPFL / PSE-A 105 Lausanne-EPFL Switzerland T. +41 21 693 2918 F. +41 21 693 4740	UNITED KINGDOM ESI UK I Robert Robinson Av. The Magdalen Centre Oxford Science Park Oxford OX 4 4GA United Kingdom T. +44 (0) 1865 784 826		
ESI Group	AMERICAS			ASIA						
Headquarters 100-102 Avenue de Suffren 75015 Paris FRANCE T. +33 (0)1 53 65 14 14 F. +33 (0)1 53 65 14 12	USA ESI North America 32605 W 12 Mile Road Suite 350 Farmington Hills, MI 48334-3379 USA T. +1 (248) 381-8040 F. +1 (248) 381-8998	USA ESI North America 6767 Old Madison Pike Suite 600 Huntsville, AL 35806 USA T. +1 (256) 713-4700 F. +1 (256) 713-4799	SOUTH AMERICA ESI South America Av. Pedrosco de Morais, 1619 cj.312 São Paulo SP CEP 05419-001 Brazil T./F.+55 (011) 3031-6221	CHINA ESI China Room I6A, Base F Fu Hua Mansion No 8 Chaoyangmen North Avenue Beijing 100027 China T. +86 (10) 6554 4907 F. +86 (10) 6554 4911	INDIA ESI India Indrakrupa #I7, 100 feet ring road 3rd phase, 6th block, Banashankari 3rd stage Bangalore 560 085 India T. +91 80 4017 4747 F. +91 80 4017 4705	JAPAN ESI Japan 5F and 16F Shinjuku Green Tower Bldg. 6-14-1, Nikh-Shinjuku Shinjuku-ku, Tokyo 160-0023 Japan T. +81 3 6381 8490 / 8494 F. +81 3 6381 8488 / 8489	KOREA Hankook ESI 157-033, SF MISUNG bidg, 660-6, Deungchon-3Dong, Gangseo-ku, Seoul South Korea T, +82 2 3660 4500 F, +82 2 3662 0084	SOUTH-EAST ASIA ESI Group South-East Asia 12, Jalan Dato Haji Harun, Tarman Taynton, Cheras 56000 Kuala Lumpur Malaysia T. +60 (2) 6181014		

All PAM- and SYS- product names as well as other products belonging to ESIs portfolio are tradenames or trademarks of ESI Group, except specified proprietary mention. All other trademarks are the property of their respective owners - Specifications are subject to change without notice.

www.esi-group.com