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ABSTRACT : This paper addresses two issues in the 3-D numerical simulation of sheet metal forming
processes. One is the implementation of an effective solid element on very thin metal sheet under the
bending and drawing operations. The other is the use of parallel computational scheme to reduce the
simulation time. Possible volumetric and shear locking phenomena for the thin structure with solid
element are avoided by adopting the assumed strain concept. Various sheet metal forming processes -
square cup drawing process with/without blank holder (NUMISHEET’ 93 Benchmark) and cylindrical cup
drawing process with DDQ steel sheet (NUMISHEET’ 99 Benchmark) - are simulated with the current
implementation. All the results derived from the numerica smulations show good agreement with the
corresponding test results. The simulation time can be reduced greatly by utilizing multiple CPUs with the
paralelized iterative solver based on the MPI(Message Passing Interface) programming scheme. The
scalahility of the iterative solver with different configurations is presented in this paper.

1. INTRODUCTION

Among many numerical simulation techniques, the
finite element method (FEM) has made significant
contributions in the modeling of bulk forming and
sheet forming processes in the past decades.
DEFORM ™-3D is an implicit finite element code. It
has been successfully used by the bulk metal forming
industry to design and to optimize their forming
processes. Hexahedral brick and tetrahedral MINI
element formulations are used to account for the large
deformation of the bulk material. The current effort is
to enhance the code for the sheet forming applications.

Due to advantages in modeling thin structures, the
membrane or shell element formulations are very
popular in the simulation of sheet forming processes.
Although shell elements represent the stress variation
through their thickness effectively, they generally
require specia treatments for the drilling degree of
freedom and the transverse shear locking to preserve
the Kirchhoff or Reissner-Mindlin hypotheses. Thus,
the shell formulation requires more complicated and
sophisticated  procedures than solid element
formulations. Moreover, shell elements do not have the
continuity of the thickness over the neighborhood

elements. A comprehensive comparison of solid and
shell elements can be found in the reference (Wriggers
et. a. [1]). In the reference, the authors showed the
possibility of the application of solid elements for thin
shell aswell asthick shell problems.

When dealing with temperature sensitive processes
(heat exchange between tooling and the blank,
temperature gradient in the thickness direction are
expected), or a process with a tailored welded blank
that involves multiple thickness sections, the solid
element is attractive due to its inherent capability in
representing the thickness direction geometrically. In
modeling the thin structure, the classica solid
elements, however, generally need the additional
treatment to avoid volumetric and shear locking
phenomena for the thin structure.

In the first part of this paper, the assumed strain
solid element will be presented and applied for typical
bending and drawing processes. The results are
compared with the corresponding experimental
measurements. Next, a speed-up technique based on
the use of a paralel computational scheme will be
presented in this paper.



2. BASIC EQUATIONS

2.1 CONSTITUTIVE EQUATION

The associated flow rule with Hill'48 anisotropic
yield criterion (Hill [2]) is used for consideration of
initial texture property of sheet metal. The flow
potential for orthotropy which conserves three
symmetry planes are written in terms of the stress ¢
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to characterize the anisotropic hardening state. ¢°isan
equivalent stress representing the current yield surface
size. The coefficients in P can be related to the R-
values (Valliappan et al. [3]). By setting B,, =1(this
means the principal anisotropic axis coincides the
reference axis),
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The remaining parameters, P.,Bs, Can not be
determined by the uniaxia tensle test. Generally the
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corresponding stresses have little effect on sheet metal
forming processes, the parameters are assumed to be
equal to B,. It should be noted that von-Mises

isotropic yield criterion is recovered when three R-
vaues, Ry, Ris Ry are set to be 1. Numerica
implementation of Hill’48 yield criterion is outlined
below.

The additive decomposition of strain-rate into
elastic and plastic parts is employed together with the
normality rule,

§=¢°+¢°,

6 =Cs¢°,

$P = X(ﬂ) =)a. (4)

Jo
where the superscripts e and p represent the elastic and
plastic parts, respectively. C is the elasticity tensor,
Ais the plastic strain-rate multiplier and a is the flow
vector defined by

a=Ple.

()

From Equations (4) and (5) with the consistency
condition (6), the plastic strain-rate multiplier can be
expressed as below:
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where A, = 26°Hze".

Finally, the rate form of the constitutive equation
can be written as,

o=[c

It should be noted that the element stiffness
matrix is directly related to the tangent modulus C*
evaluated at each integration point, which governs the
convergence rate of the global iterative scheme. Thus
the consistent tangent modulus is essential to keep the
guadratic rate of convergence in the Newton-Raphson
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scheme (Simo and Taylor [4], Crisfield [5]).

2.2 SOLID ELEMENT FORMULATION FOR
THIN STRUCTURES

A locking-free element is essentiad for the
robustness of the finite element method. Severd
versons of the reduced integration method using
hourglass control techniques have made remarkable
progress on this issue (Belytschko and Bachrach [6];
Hughes [7]; Belytschko et al. [8]). Li[9] and
Jetteur[10] proposed a strain field modification to
avoid numerical instability. This paper was based on
the method proposed by Li [9]. The essential equations
for the strain field description can be written as
follows.

£=¢0 +£h . 9
where £Cand £ are the constant and the non-
constant terms of the displacement gradient

respectively. The non-constant terms can cause
undesirable  locking,  volumetric  locking  or
hourglassing. To avoid these undesirable effects, the
modified normal strain part, Equation (11), is assumed
to be the same as Equation (12) in Equation (10).

e =455 0gd 445, (10)
where

g = {ul,l’ U, ,, u3,3101010}, (12)

£d = {Ul,l’UZ,Z’GS,S!O!O!O} ) (12)

Ui,j = ui,j _6ijuk,k/3' (13)

Here, the repeated index is used to denote the
summation

Possible shear locking in thin-structure analysis
can be resolved on the element level by adopting the
the assumed transverse shear strain field (Sze and Yao
[11]; Kinkel et al. [12]). The transverse shear strains
are interpolated from the values evaluated at the mid-
points of the element edges as below.
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Severa numerical examples will be discussed in
the following sections.

3. NUMERICAL EXAMPLES

3.1 NUMISHEET’ 93 BENCHMARK TEST

This example is taken from the NUMISHEET'93
Benchmark Test[13]. An easto-plastic material with
the von-Mises vyield criterion and an isotropic
hardening model was used for this example. The
material and process data were provided by the
committee of NUMISHEET'93. The typica
parameters for this simulation are summarized below:

« Blank size: 150 X 150 mm?
* Blank thickness: 0.81 mm
e Materia: Aluminum aloy
- G =570.40(0.01502 + €P) %
- E=70Gpa, v=0.3
e Constant BHF: 19.6 kN
e Punch stroke: 15 mm and 40 mm

The deformed shape a 40mm punch stroke is
shown in Figure 1 and the amount of draw-in along the
rolling (DX), transverse (DY), and diagona (DD)
directions is compared with the average values of the
measurements in Table 1. Since an isotropic yield
criterion was used for this simulation, the predicted
draw-in along two directions, DX and DY are almost
identical in the simulation. Numerical results are well
correlated with the measurement results.



Figure 1 Deformed shape in square cup drawing
(aluminum aloy sheet, at 40 mm punch stroke)

Table 1. Draw-in distance

Measured point Measured Simulation
15* (DX,DY) 5.3 mm 5.5mm
15*(DD) 3.3 mm 3.3mm
40**(DX,DY) 28.5mm 26.9mm
40**(DD) 15.0mm 15.5mm

Note) * and ** denotes 15mm , 40mm punch stroke
respectively

3.2 CUPINDENTATION PROBLEM

Kawka and Makinouchi [14] and other researchers
have shown similar processes as NUMISHET' 93
benchmark test, but without a blank holder, to verify
their element formulation including the thickness
integration and to investigate the wrinkling mode at
flange. Except the removing blank holder, the same
tooling and process data in section 3.1 have been used
for this simulation. (See Figure 2)

Figure 2 FE model for square cup indentation

The blank is an aluminum alloy sheet with 0.78 mm
thickness. The corresponding test results, carried out
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a Kangwon National University are compared with
numerical results in Figure 2. Up to 25 mm of punch
stroke, the numerical results have good agreements
with the test. Moreover, the folding of the flange can
be predicted from the simulation with 30 mm of punch
stroke (See Figure 3(c)) (Unfortunately, the
corresponding test result is not available).
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(c) Punch stroke =30 mm

Fig. 3 Deformed modes in square cup drawing

3.3 NUMISHEET’ 99 BENCHMARK TEST

This benchmark problem was proposed for
NUMISHEET’ 99 (Benchmark B1-part 2), designed to
explore the anisotropic aspects of sheet metal forming
processes, both from experiments and numerica
simulations [15]. Part I, which is omitted in this paper,
refers to a deep drawn cylindrical cup with a
hemispherical punch free of any localized necking or



split according to the actua individual forming-limit
curve. Part 2 is simulated under given a constant blank
holder condition.

The typical parameters for this smulation are
summarized below:

* Blank thickness: 1.0 mm

* Drawingratio: 2.0

* Constant BHF: 80 kN

* Drawing depth : 85 mm

* Material : DDQ (mild steel)

* R-aues R, =173 R, =123 Ry, =2.02

The NUMISHEET 99 committee supplied tool
geometries and material data for DDQ(mild steel). The
FE model for this benchmark is shown in Figure 4. An
elasto-plastic material with the planar anisotropic yield
criterion (Hill’48). The earing shapes can be obtained
from planar anisotropic yield criterion and the
corresponding punch travel and punch force are
compared in Figure 5. The amount of draw-in aong
the rolling (DX), transverse (DY), and diagonal (DD)
directions are compared with the measurements in
Table 2. The measured data is average values of three
participations (B1E-02, B1E-03 and B1E-04) in
NUMESHEET’ 99 benchmark test.

<

Figure 4 FE model for cylindrical cup drawing
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Figure 5 Punch force vs. stroke curve

Table 2. Draw-in distance

Measured point | Measured Simulation
DX 29.0 mm 27.0 mm
DD 32.0 mm 35.0 mm
DY 27.5mm 25.0 mm

4. SPEED-UP TECHNIQUES

The rapid advance in computer technologies during
last several decades makes 3-D FE models viable for
the metal forming applications. However, industry
demands have also increased: larger FEM models,
more complex shapes, and shorter smulation times.
Thus, the development of an efficient solution method
has also been one of the thrust areas in the software
development.

Generally speaking, the most computationally
demanding tasks of an implicit FEM code in solving
contact problem are (@) equation solving, (b) contact
searching, and (c) stiffness matrix generation. The
relative percentage of time spent on these three areas is
largely dependent upon the blank mesh size and tool
model size. Generally, for a reasonably large industria
problem, the solution solving using a conventiona
direct solver can take more than 90% of the computing
time. Therefore, special attention is being made to
speed up the solving procedure.

In order to fully utilize the paralel computing
environment, a pre-conditioned conjugate gradient
iterative solver was first developed (SFTC [16]) to



replace the direct solver, which solves a set of linear
algebraic equations iteratively. The iterative solver
was then further developed to use the MPI (Message
Passing Interface) facility. The equation solving
process using the iterative solver can be carried out not
only for multiple CPUs in a single machine, but also for
clustering of multiple machines. To compare the
performances of MPI implementation, different
configurations are employed (SFTC [17]) and the
scalahility of the iterative solver using MPI with a
typical metal forming problem is shown in Table 3. It
should be noted that the number of equilibrium
iterations was different depending on the number of
processors due to the truncation error inherent to
parallel computation, however the solutions are amost
same. Moreover the scalability appears linear in this
example. However, linear scalability can be maintained
only under the condition where the balanced network
speed and the CPU speed are comparable. Thus
continuing to develop the intelligent solution method
which can handle with a big size of matrix efficiently, is
also requires for fast analysis of 3-D meta forming
simulations.

Table 3 Scalability of iterative solver with MPI

Node* Scalability
(CPU/Node 100 Mb 1Gb
) Ethenet Myrinet
1*1 1.0
1*2 2.20 2.20
2*1 2.48 2.57
1*4 2.94 2.60
2%2 3.49 3.64
4*1 3.84 4.39
2*3 2.67 3.34
3*2 4.87 533
6*1 5.09 6.33

Note) Processor : Intel Pl 55 MHz(512 KB Cache)
Network: 100 Mb Ethenet and 1Gb Myrinet

5. CONCLUSIONS

In order to provide a robust and fast solution
method for 3-D sheet metal forming process, two
issues are discussed in this paper. One is the use of
solid element with the assumed strain and the other is
speed-up technique with MPI programming. For
typical 3-D sheet metal forming processes, square cup
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drawing, square cup indentation and cylindrical cup
drawing, a good agreement with the corresponding test
resultsis obtained. The improvement in smulation time
with the MPI implementation is also presented. It is
believed that the current development, use of multiple
CPU based on MPI programming, is one of the
efficient ways in the 3-D sheet meta forming
simulation.
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